
RO-RI69 ass N EXPERT-SYSTEN-LIKE FEED DCK 
PPROCH IN THE 1/1

HP-YERSION OF THE FINITE E.. (U) NARYLAND UNIV COLLEGE
PARK INST FOR PHYSICAL SCIENCEGAND TECH..
UNCLSSIFED IBROUKR E RL.NRY 6 ON 94F/a 12/1 M

m~hhEhEEEE



1-

14

roll, - '-S
,. IIf'

so

12 1 1 4

b

p..

p%

~ ~ ~ ~-'.:-. . ~-2& - .. K -



Te&e-1I C3. 1 ote ONi-1 648

U,) DTIC
00 S ~ELEIC.16e a
0) JUL 149IM

An £xptirt-Syst&&Like *'eatback Approach
In~ tile hp-llerzic of the 7inite E'.~wxs Mcf,1'.1

I. BabtL!ka
htitute &Cor ?ysical~ S'A1enoes aav± Tce'wo.Lcry

Uniyral'it-j of ?arylancI

im~i tutc Zr rMysic~1 04inse az'd Tt.L.:k~togy
IUmi-iersity of ?!3ry1~wid

Fach,3et-liet Flakro:nischts PEechucni -," Konsl..,utiv i.'e: ingea. '.rt

&ecral, iiepubll, oC, Gerrkiva.~

U-A



SECURITY CLASSIFICATION OF THIS PAGE (frten Deo. &lmr_ _ _

REPORT DOCUMENTATION PAGE BEFORE __M__ ruc __o__

I. REPORT NUMBER A .GOVT AgESSION N . R .,P C T*S CATALOG NUMBER

Technical Note BN-1048 6J R IK ?
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

An Expert-System-Like Feedback Approach in the Final life of the contract
hp-Version of the Finite Element Method

6. PERFORMING ORG. REPORT NUMBER

7. AuTHOR(a) S. CONTRACT OR GRANT NUMBER(e)

I. Babuska and Ernst Rank ONR N00014-85-K-0169
(DAAD - German Academis Exchange 312/402/568/6 - Grant No.

Service)
S. PERFORMING ORGANIZATION NAME AND AODRESS 1O. PROGRAM ELEMENT. PROJECT. TASK

Institute for Physical Science and Technology AREA & WORK UNIT NUMBERS

University of Maryland
College Park, MD 20742

1,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

Department of Naval Research May 1986

Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 48
14. MONITORING AGENCY NAME & ADORESS(If diflerent from ContrOlind Office) IS. SECURITY CLASS. (of this report)

ISs. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abd ect entered ln Block 20.If1lfe1rent born Repor)

1. SUPPLEMENTARY NOTES

1i. KEY WORDS (Continue an reveree ld If fneceeoao md Identif' by block umber)

Finite element methods, hp-version of the finite element method; hp-extension,
expert systems, elasticity, adaptive methods, error estimations.

20. ABSTRACT (Continue on ,evere aide if mece,*y and Identify by block number) It has been theoretically
shown that exponential rate of convergence in the energy norm can be obtained by

* a proper combination of the h- and p-extension of the finite element method for
essentially all engineering problems in plane elasticity, including those with
singularities in the exact solution. The paper presents an expert system frame,

% which guides the u er to an optimal selection of the mesh and degree distribu-
% tion. Numerical examples show that the suggested approach gives superior results

with the minimum effort inhuman data preparation and computer time.

DD I AN 73 1473 EDITION OF t NOV 61 IS O8SOLETE
S/N 0102- LF-014- 6601 SECURITY CLASMIFICATION OF THIS PAGE (When Doa Ende-)



An Expert-System-Like Feedback Approach
in the hp-Version of the Finite Element Method

I. Babugkal

Institute for Physical Science and Technology
University of Maryland

Ernst Rank
2

Institute for Physical Science and Technology
University of Maryland

and

Fachgebiet Elektronisches Rechnen im Konstruktiven Ingenieurbau
Technische Universitat Mtnchen
Federal Republic of Germany

4

Partially supported by the Office of Naval Research under Contract NO00!4-

85-0169.
2 Supported by DAAD (German Academic Exchange Service),

Grant No. 3 12 /40 2 /568/6.

o *'' -.. ° - o i . -. o . -*-. o- o - - * o• . - .• o • . .• o•• °.• . .C.. *o-. , . -.. . .,',, ,. -,.. - .? .- , ° ,. ... ,.. ,o-...-. :. , .. ,.. . ° . • - ' , . , '



Abstract

j It has been theoretically shown that exponential rate of convergence in

the energy norm can be obtained by a proper combination of the h- and p-

extension of the finite element method for essentially all engineering

problems in plane elasticity, including those with singularities in the exact

solution. In this paper we present an expert system frame, which guides the

user to an optimal selection of the mesh and degree distribution. After a

crude preliminary computation the expert system predicts the performance of

various mesh and degree combinations and provides the analyst with rational

support for his decisions about the mesh design. Numerical examples show that

the suggested approach gives superior results with the minimum effort in human

data preparation and computer time.

Keywords: Finite element methods, hD-version of the finite element method;

hp-extension, expert systems, elasticity,-adaptive methods; error estimations.
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1.INTRODUCTION

Today, powerful and sophisticated methods in computational mechanics are

widely available. Yet, these tools are very often not used as efficiently and

intelligently as they could be. The reason is that the more complex and

general this software is, the more expertise, i.e., experience and knowledge

of the user, is necessary to use all its possibilities efficiently. In

* general, it is impossible for a single user to have all this expertise.

Traditionally an expert's knowledge has been made available through

* direct consultation or by his training of a group of apprentices. Both

approaches are slow and expensive and have obvious limitations.

Today's technology of building knowledge-based systems offers an oppor-

tunity to change these approaches by capturing the desired expertise and

* storing it for use in a computer system so that newly acquired knowledge can

easily be incorporated and efficiently disseminated.

The frame of an expert system belongs to the field of artificial intelli-

* gence where vast literature is available. (see, e.g., [ll, [2].) This frame

has been applied more or less successfully in various fields. For example, we

refer to [3] for a survey of literature related to engineering problems, and

to [24] for the use of an expert system helping to select particular numerical

methods. Various conferences and symposia have recently addressed this type

of question in different contexts.

-One of the main parts of the successful design of an expert system is to

formulate (and justify) the rules, heuristics, experience (in general exper-

tise) which can be incorporated into the expert system frame. The formulation

of these rules in the context of an optimal mesh design for finite element

analysis will be the topic of this paper. We will also utilize the ideas of
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adaptive approaches, and we will consider especially the problem of the

optimal use of the possibilities of h-, p- and hp-extension when the goal is

* to get the solution in the range of a prescribed tolerance of the error in the

energy norm. In a very basic sense, adaptive procedures and reliability

assessments (e.g., a-posteriori estimates) have clear connection to the expert

system area although they have only algorithmic character. (For a survey of

basic achievements in this area and literature we refer to [5]).

Any finite element analysis can be essentially separated into two parts,

the decision phase and the execution phase which carries out the decisions,

* although these phases are often interwoven.

The decision phase includes the specification of the goals of the analy-

sis, (e.g., computation of stresses in some regions, computation of the stress

-, intensity factors, frequencies of vibration, etc.), specification of the

available information and its reliability (as the domain loads, the material

properties, etc.), the desired accuracy (as used norms of the error, accept-

* able tolerances) and the available resources of computer time and storage.

* Based on these specifications, the user selects the mathematical model, con-

* structs the mesh using available mesh generators, selects the methodology of

computation of the desired data (e.g. elements and degrees). He selects the

method of interpreting the results (for example graphical postprocessing) so

that human and computer cost are expected to be as small as possible. How-

'. ever, most finite element programs and mesh generators provide little rational
support for proper decisions and obviously expertise is needed for an optimal

use of these programs.IThere are three basic versions of the finite element method, the h-, p-

and hp-version. In the classical h-version the polynomial degree p is fixed

2



at low levels, typically p=1 ,2, and the accuracy is achieved by refining the

mesh. The p-version fixes the mesh while achieving accuracy by increasing the

degrees of the elements. The hp-version is a combination of both. The theory

of the p-, and hp-version is given, for example, in [6], [7] [B] and [9], and

for practical applications we refer to [10] and [11]. The p- and hp-versions

are recent developments and, besides some research codes, the authors know of

only two commercial programs based on the p-version. These are the computer

program PROBE (Noetic Technology, St. Louis , USA) [12] for solving two-

dimensional problems (with p=1,...,8) and FIESTA (ISMES, Bergamo, Italy) [13]

for three-dimensional problems (p=1,...,4).

One of the main features of the hp-version is that in practically all

." engineering cases (including domains with corners, cracks, etc.) exponential

rate of convergencc can be achieved (see [8]).

Although theoretically the method is reasonably understood today, there

is still the practical problem of how to design the mesh and the degree of the

elements so that the given accuracy is obtained in the optimal way. The mesh

design and the assignment of the degree of the elements can be based on an

adaptive approach. We refer to [7] for the analysis in a one-dimensional

setting.

The approach discussed in this paper is essentially different from the

adaptive methods, although there are, necessarily, similarities to the aims of

the adaptive codes. Our approach clearly separates the phases of decision and

execution and adds the part of the advise and communication with the user

( itilizing ideas of knowledge-based systems). It uses well-defined mathemati-

cal rules, heuristics and experience to guide the analyst to the design of

nearly optimal meshes and degree of the elements leading to the desired

accuracy. the main idea of the approach presented here is that after the
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design of the most crude mesh modelling the geometry (which always has to be

made by user's interference) one crude (cheap) computation is made to obtain

the main characteristics of the solution. Using this information, the user

obtains nearly optimal meshes and degree of elements (for the desired

accuracy) together with information about the relationship of computer cost

and predicted accuracy.

Based on the user's response, the nearly optimal mesh and degree of

elements is designed in one step (and not, as in the adaptive codes mentioned

* above, in a subsequjent mesh refinement). The solution is then obtained in the

* execution phase, which is typically about 80 to 90% of the total cost.

The knowledge-based system ideas we are using in our approach

a) help to identify the class to which the concrete problem belongs,

b) characterize the critical areas of the solution (heuristics),

c) give the user concrete ways for extracting essential information

about the problem (algorithms),

d) give the user qualitative information about predicted features of

various optimal combinations of meshes and p-distribution and the

relation between the cost and accuracy (heuristics and algorithm),

e) use the analyst's decision to construct (automatically) the mesh, p-

distribution, etc., and present the solution to the user (algorithm)

with a-posteriori assessment of the reliability (algorithm, heuris-

tics) of the solution which gives him the choice of accepting or

rejecting the result.

In this paper we will restrict ourselves to the class of elasticity

problems on polygonal domains with homogeneous and isotropic material and

smooth boundary conditions, although the basic concepts above can he applied

*t~o more general situations.



2. THE ELASTICITY PROBLEM ON A POLYGONAL DOMAIN AND ITS BASIC PROPERTIES

Let us consider the plane (strain) elasticity problem on a polygonal

domain 0 shown in Fig. 2.1.

A5 A

"4 r3

rS2
r6 W 2_ A2

A6 -A 7

A8 r

A i  FM
A

- AM

Figure 2.1. Polygonal domain.

By 32 we denote the boundary of Q and have

S.; y {1,...,M1 where r. are the open edges connecting the
icyvertices Ai, Ai 1 (AM+ ! = A,). By w, we denote the internal angles of

in A; We will not exclude the case w. = 27 and w. =

1Let ;Q = D rN ;

' - r = T-
D i -'D cYi ' N D
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TD will be called displacement and rN  traction boundary. We allow

rD = a or rD = 9

Considering the plane (strain) elasticity problem on 2 , we denote by

u(u I , U2 )T the displacement vector, E, 0 < v < 1/2 the Young's elasticity

module and Poisson's ratio, respectively. The strain energy is given by

Eu I ) 2 uI au2
W(U) 1 [--V) (-u 2v au3

2(1-v)(I+v) fax ax ax
11 2

(2.1)
2u 2

2

Let E lulW(u) < ,u =0 on rDI be the energy space and let Jul =

W(u). It is well known that the energy space E is equivalent to the Sobolev

space H (0)  (modulo rigid body motion displacement functions when r = aI D
The elasticity problem (without volume forces) for prescribed tractions

T = (tl, t2 )T on r N now has unique (weak) solution u0  which minimizes

over E the quadratic functional

2

(2.2) 1(u) = W(U)- f J t.u.ds
i-- rN

If rD = 9 then we assume that the tractions satisfy the usual equilibrium

condition. Furthermore, we assume that ti  i=1,2 are analytic on every M

(closed) edger. c rN The solution u0  is then analytic on T U
( i=1 i

and for some 0<6< , d>1, c>O, Iai> 2

(2.3) [ f (Dau0) 2[]2(>26) dQ]112 cd I1

.



holds for all a = (cia 2) , where a i 
> 0 integer, a,+ a 2 = lal with

M
= x-A i . Ix-AII is the Euclidean distance of x to Ai , and

i=1

Dcu = - ' a2u Further, in the neighborhooda1  a2x !J X , c L x 2

S. = jx1 x-A i<r 0} of the vertices A i the exact solution u0  can be

written in the form

Q.
i

(2.4) u0  = K ijij (ri)g ij(0.) + WQi
j i Qiii

* , where (ri , 0.) are polar coordinates with respect to A i., ij(r.), g. (®.) are
1 i ij i i.J i

a-priori known functions independent of u0  (depending on wi) and Kij

(scalars) are stress intensity factors (dependent on u0 ) and wQ i is an
Qi'

analytic function on S.-A. which is smoother than the first term on the
i i

right-hand side of (2.4). Qi is a positive integer which will be chosen for

our practical purposes as 1 or 2. For more details, see [14], [15] and '16].

The function g ij(0 i ) is analytic up to the boundary of S i and

Oij (ri ) = Re (rioj gP r i ) ; p Z 0 integer. aij are in general complex

numbers with positive real parts and Re ai j + 1 a Re a.. Hence the first

terms in (2.4) are the most singular ones. For the way to compute stress

intensity factors we refer to [17], and [18].

Table 2.1 shows the values of aii and ai2 for some internal angles

W, when the tractions are prescribed on both sides of A .. In this case

p0.

-. 1 1 ~ -



w.w 1, a77

3. 11 12

3600 0.500000 0.500000

2700 0.544484 0.908529

2400 0.615731 1.148913

2250 0.673583 1.302086

2100 0.751975 1.'485812

Table 2.1. Exponents ai1  and a1 2 for selected

internal angles w. at a node Ai

• . ... , . . s



3. THE HP-VERSION AND ITS BASIC PROPERTIES

As was stated in the introduction, the hp-version is a proper combination

of the h- and p-version of the finite element method. For simplicity we will

assume that the polynomial degree of all the elements is the same. It has

been shown [8] that if the exact solution satisfies (2.3) then for a proper

mesh A(p) depending on p the error of the finite element solution uFE

measured in the energy norm decays exponentially. More precisely

1/3a N D)
* lelE I'FE u 01E Ce- p N1 CD

where a>O and N is the number of degrees of freedom.

The error in particular elements has two essential parts. The local one

depends only on the solution in the given element and the global one reflects

the influence of the error in the entire domain (so-called pollution error).

The global error is (for properly designed meshes) smaller than the local one.

If an element is not adjacent to any vertex, then the local error of the (p-

version) finite element method is of the order e-a N1
1/1 where NI  is the

number of degrees of freedom associated with the element whereas the error is

of order N when the particular element has a vertex in a corner of the

dorain. Hence the decay of the error is more rapid in areas far from corners

of the domain than in the neighborhood of the corners. Therefore only proper

refinement in the neighborhood of corners is needed, while in the elements not

adjacent to corners high accuracy can be achieved only by increasing p. For

practical engineering accuracies we can treat convex corners as no corners

(provided that the boundary condition is the same on both sides of the

vertex).

• (
-°
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So the proper mesh A(p) is a geometric one with geometric refinement in

the neighborhood of every reentrant corner. An example of such a mesh with 2

layers at A0  is shown in Fig. 3.1.

Figure 3.1. Example of a geometric mesh with two layers.

It has been shown that the optimal number n of layers of elements

increases with the polynomial degree p, that the optimal ratio of the

geometric mesh is independent of the strength of the singularity, p, and the

number n of layers and has a magnitude of .15. (see [7] and [8].) Thus a

- very strong grading towards the singularity is obtained.

If the mesh is fixed (with different numbers of layers) and the polynom-

ial degree p increases, then the error behaves as schematically shown in

Fig. 3.2.

,'-'.o...-'. .. ,I .. . -,, -- . ? - .'..,.- i-J "," - -"- -". -'.",i.-. '....' ..-. ,,- - - - -. , -. .
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a) 0

EI..
0

>- n,=3
_o 10g (N)

;iNumber of degrees of f reedom N

Figure le2 IeE in dependence of the number of degrees

, of freedom for different number of layers n .

For each fixed number of layers we see a typical reverted S-curved be-

haviour of the error. We see the preasymptotic phase, (curved down), when the

error decays exponentially and the asymptotic phase, (straight line), when the

error decays algebraically. For theoretical results we refer to [7] and [P8].

~Figure 3.2 shows that at reentrant corners for high number of layers and

%| low polynomial degree p the mesh can be overrefined (with respect to N)

while an insufficient number of layers leads to an underrefined mesh. The

I%

[..
t 0
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detailed behaviour is complicated but it strongly depends on the values of

Kij and aij in (2.4).

For practical reasons we wish to design a mesh (i.e. the number of layers

in every corner) depending on p so that the desired accuracy can be achieved

in a most economic way.

The definition of the cost of a computation can vary. It can, for ex-

ample, be a function of the degree of freedom N or the number of operations

required in the computation and elimination of the stiffness matrix, depending

on the sparsity of the matrix.

Our experience shows that (because of overhead, 10) it is enough to

consider the cost as a function of N only.

J
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4~. THE MAIN PRINCIPLES OF THE MESH DESIGN

The main goals for the optimal mesh design are the following:

1) The user Supplies only the basic data which have to be kept to a

minimum.

2) The user should get rational support for his finite element analysis,

* mesh design, relationship between accuracy and cost of the computation, etc.,

and he should be given the opportunity to make the crucial decisions in the

* entire process. The expert system provides, then, the support for the user to

* execute his decisions automatically.

The finite element analysis based on the expert system's support has the

* following components:

*a) Interactive graphical mesh generation and data characterization

The finite element process starts with the characterization of the prob-

* lem by definition of the domain by a basic mesh which is as coarse as possible

* (or by solid modeller information) of the boundary conditions, the loads, ma-

terial properties, etc. Graphical input should be used wherever possible and

* analysis of the data for possible input errors should be provided.

In this paper we will concentrate only on the aspects of the domain defi-

nition and we will assume that they belong to the class of polygons. The

basic mesh will also serve as the basic set of elements which will be dealt

with.

*b) Basic decisions about critical and noncritical elements of the basic mesh

An element is said to be noncritical if the optimal rate of convergence

* (in the range of engineering accuracy) can be obtained by increasing the



degree of the elements without any nrfnemnt..'4 An element is said to be

critical if the optimal rate of convergence cannot be achieved only by

increasing the degree, but the element has to be refined. The decision about

these two classes has to be based on the expertise which uses theoretical

results, heuristics and experience.

For example, all elements adjacent to reentrant corners or vertices with

K changing boundary conditions as well as elements with excessive aspect ratio

or elements where the load is Unsmooth are critical. We will assume in this

* paper that the critical elements of the basic mesh are only those adjacent to

vertices with concave internal angles.

c) Extraction of critical data about the solution

Crude preliminary computation and various extraction procedures give the

basic qualitative and quantitative information about the solution in critical

* areas. Especially in this paper, the approximate determination of the stress

% intensity factors in (2.4) will give essential information about the solution.

- We will extract the stress intensity factors by the procedures described in

[17] and [18].

d) Prediction of the performance of various optimal mesh and degree combina-

* tions

This prediction is one of the critical parts of the system and will be

elaborated on in detail in section 5. The prediction characterizes the per-

formance of the meshes with different numbers of refinement layers n in the

4. critical elements in dependence of the polynomial degree p. This prediction

utilizes the information obtained by the extraction technique under c) above.

h 314



e) Presentation of the predicted performance for the user's decision

Based on the analysis in d), the basic data about the predicted relation

between cost and accuracy are graphically presented to the user. Other char-

acterizations may also be provided. For example, in the case of multiple

loads the user should get advice on whether it is advantageous to solve the

problem with one mesh or to use different meshes for various classes of

loads. In this paper we will restrict ourselves to the case of one load only.

*f) Mesh generation for the (final) computation based on the user's decision

Based on the user's decision, the mesh which is expected to give accept-

ably accurate results in an optimal way (for given optimal degree of the

* elements) is constructed automatically.

*g) Finite element computation and assessment of the reliability of the

computed data

The finite element code uses the optimal mesh and determined degree of

the elements. It provides the solution and a-posteriori assessment of the

reliability of the basic computed data (e.g., error in energy norm). In this

paper we will use the code PROBE for the computation.

h) Presentation of the basic results of the computation for the user's

acceptance

The basic results obtained under g) are presented to the user and with

the possible assistance of the expert system the user decides whether the

results are acceptable.

15
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i) Postprocessing and visualization of the results

If the user accepts the finite element results, various postprocessing

procedures are appended to give him the results in which he is interested, to

provide graphical display, etc. The expert system will probably help to

interpret the results.

j) Processing of rejected results

If the user rejects the results because the prediction was not accurate

enough, then the computed data are used analogously to the crude mesh data -

with additional information and the process is repeated from c). Rejection

should occur only under very exceptional circumstances.

The underlying data structure of the whole process is a project data base

where the complete history of the analysis is stored. This makes it easily

possible to add new load cases or to modify the needs of the accuracy of the

results.

* 12
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5. PREDICTION OF THE PERFORMANCE OF VARIOUS OPTIMAL MESHES AND DEGREES FOR

CRITICAL ELEMENTS

5.1 Error analysis in critical elements

We have seen that in the neighborhood Si of the vertex Ai  the solu-

tion has the form (2.4). Because the function gi,j(G) is smooth, the be-

haviour of the error is qualitatively the same as if gi,j(D) = 1. Hence we

can expec, that the error in the sector Si  is essentially the same as in the

one-dimensional setting in the interval (0, r0 ) with the weight x express-

ing polar coordinates. For the two-dimensional analysis we refer to [8] which

justifies our assumptions.

Let us first study the problem of the best approximation on the interval

I=(-1,1) . Let for E < 1

(x + X - for x >

0 for x

and let W(a,E,x) = (x -

Denote

+I

(5.1) E (a,&) = [ inf f (p - )2 dx] 1/2
p W -

where the infimum is taken over the set of all polynomials of degree p

Analagously let

(5.2) E inf f (1 - x2 - W)2 dx1 1 / 2

W -1

The values E (,) and E (a, ) express the minimal error achievable byp P

the polynomial approximation. Now we have

17



Theorem 1:

a) If = -1 then

(5.3) E (a, -1) CO(a) 2( + O())
p (p+)2a1 p

where C(r(+a)) Isin(7a) J

b) If C <-1 then

(5.J4) E ( ,) = C,(a)(-- r  ) rP+ (1 + 0 (1))
p 2r (p+1) a+1l

!
where > > 0 r =

and C1 (a) =r(l~) Isin(wa)I

Ir-;

P(a) is the gamma function and 0(-) is a function which is of the same
p

order as - For the proof, see [7] theorems 5 and 6.
p

We see that for 5 = -1 , i.e., when the singularity is in the vertex,

the error decays algebraically with the order (p+1) , while when & <-1,

i.e., the singularity is outside the interval, the decay is exponential.

A similar theorem holds for E :P

Theorem 2:

a) If & = -1 then

* 2~a + 1  1p2
(5.5) E (a, -1) = 2(a) ( + 0( )

p~( 22aZ+2 (p+1)P

where

41



C 2  z = (r(a+2))
2  lsin( n )I

2 Tr(a+ I )3/2

b) If C <-1 then

1_r2c a p+!
(5.6) Ep*(a, ) = C3(a)(1-r2) -- r ) a r)+1 (1+O(1p))

p r (p+1) p

where > 0 , r is defined as in theorem 1 and

1 r(a+2) Isin(ia)I

3 2(z+! )

Theorem 2 can be easily obtained by modifying the proof of theorem 1,

using the fact that

."J (1 - x 2 ) P ' d x 0 f o r j k

-1 j k j(j+l) f1 pj2 dx for j = k

where P. are the Legendre polynomials.

Comparing (5.3) and (5.5) we see that Ep is smaller than Ep and that
,p

E p 0 for a > -1 while E p 0 only for a > - 1/2P P

On the other hand, comparing (5.4) and (5.6) we see that E and E
p p

are up to a constant essentially the same, (i.e., Ep E ).

Let us now define

E (a,) = inf [ 1 (1+x)(op-w) 2 dx] 1/2

** **

As E - Ep for C < -1 , it is clear that in this case also E - Ep

Moreover, E - Ep also in the case & = -1 , since near the

singularity - 1 of the weights 1+x and 1 x2  are essentially the

same.
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So far we have been interested in rhe cas2 NC-1,!). Let us now take

I=(a,b) and

: x -d ¢ < a

Defining

E (a,b,d,) [ i f ( )2 dx] !/2

W a

and

E * (a,b,d,a) [inf fb (x-a)(b-x)(iPW)
2 dx] 1/2

W a

E P(O,b,O,cz) = n f x(ip - W) dx]1/** 0

P LL 0

we easily get the relationship between Ep (a,&) and E p(a,b,d,a) by a

scaling argument.

Lemma 3:

(5.7a) E (a,b,d,a) - ha + 1/2 E ( ,a)
p P

* h~a + 3/2E( )
(5.7b) E (a,b,d,a) -h (,a)

p P

** e + 1 **

(5.7c) E (0,b,0,a) =h E (0,a)P P

d-c a+b b-a
where C 2 h = 2

Now let A be the one-dimensional mesh on I=(0,B).

A: 0 = x0 < x! < x2 < ... < x = B

where x. = Bq M q < 11

and denote I. = (x, X.)

Assume that f - x and define

*



(5.8) E(B,p,q,M) -(inf f B(f - W x dx)12

W0

II

where the infimum is taken over all functions w E H (I) and w is a

polynomial of degree p on Ii, i = !,...,M and w(x.) = f(xi).

We now have

Theorem 3:

, 2B(M-1) r2 p (1-q2 B (M-1))(1 -q)q
-  1 12

(5.9) E(B,p,q,M) -B.-+ 2B 26/
p p I -q

where D (6) < C < D (6) with D. independent of M and p

2 i dpneto n

Proof:

B-i
We will approximate f' = Bx by polynomials of degree (p-i) on

every ij Then by integration we construct w H (I).

On Ij, j > 1 we use lemma 3 and set

aBqM -j b x BqM-j-1

h BqM-j 1-q c BqM-J i +q

c I+q 1 1-q i2a
h 1-q r = IEJH/2_i 1 +q) +2,/q 1+,/q

We get

2 B-i p 1

E(xj_,xj,O,B-1) = C(a) L-6-1 B B-( q 2)

(2r) 1  p6

B-1

)~I~= C()I 2 rp  B-'4 (M-j)(B-2)
C(B) (-q) q r B q

2 2 pB

On I we have
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E p (0,x1 ,0,5-1 ) = C(8 ) B q (M-1) ( 2-- 2
p 2 2B

Hence E(8,p,q,M) = C(8) [(1-q)q - r2  B2 8 -
p2

j q2(M-J)(8J/').B'q(M-J)+ B28q2 8 (M-1)(0:a) 2-2 2 B 1/2

j=2 2 48

C(8)B 8  Q2(M -1) + r2 p  (1j- 2 (M-1))(1-)p8- 1 ] 1/2
p p 1-q2

where C(8) is independent of M and p and is (mildly) dependent on q.

We are now able to return to the error in the critical element e

having a vertex in the vertex Ai  of the polygon. (see Fig. (5.1).)

.5i

wi 2 Ai

d..

e2

Figure 5.1. Scheme of elemen's at vertex A.
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We will assume that the solution to be approximated is

and that the critical element is divided into M-1 layers by a geometrical

mesh. Furthermore, let

(5.10) p 2 C-W~ K 2E 2(cti p,q,M)*B .
i=

W.is the angle of the critical element at A~ (see Fig. (5.1).) and B~ is

eradius of the smallest circle centered at Ai covrig teelement.

Teexpression (5.10) is an error predictor for the error in the energy

norm. It will be seen in the numerical examples that p reliably gives all

characteristics of the error behaviour in dependence of M , i.e., the number

oflayers.

The value q will be chosen of the order .15 as stated above, which is

the optimal value for one-dimensional problems. CWs in (5.10) is not

critical for our purposes because it ranges only over a small interval.

* 5.2 Optimization of the number of layers in the critical elements

As has been said, we will assume that the decisive areas for accuracy are

the critical elements which have to be refined. Hence we will assume that the

only error is in these elements and that the stress intensity factor-, are

known.

For given p and number of layers ni = Mi-1 in the t(i) elements

adjacent to the critical vertices Ai , i=l,...,s we get from (5.10) the

* error predictor for the error in the whole domain Q
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(2(p s t(i) 2 2M2 C£, i
(5.11) , P M i )  = C. 7 W - K Z i E (a£ p, Mi) ,j

i=1 j=1

where Kz, i are the (known) stress intensity factors in the vertex A. and

a the exponents of the singular functions in (2.4).

The number of degrees of freedom over all the refined mesh will be de-

noted by

N(p,M i  , i=1,...,s)

Assuming that the computational work is a function of N only, we can formu-

late the following optimization problem:

Given an upper bound No  of the total number of degrees of freedom

find p and Mi so that it minimizes (5.11) under the constraint

N(p,M i  , i=1,...,s) < N .

For practical purposes, p Can be restricted to a maximum degree, pmax' and

it is also reasonable to restrict the number of layers to some Mmax . A

possible choice for the maximally allowed number of layers is Mmax = max

as it was shown in [8] that the optimal combination of M and p in the case

of a single crack-tip singularity is given by M = p .

With these restrictions the optimization problem is finite and various

methods for constrained, finite optimization could be used. Yet it turns out

that (5.11) often has many local extrema so that the exact optimum will be

hard to find. Nevertheless it is not necessary to find the minimum exactly

because various simplifications have been made in obtaining (5.11). In all

our test examples, the following simple heuristic algorithm gives nearly

optimal results with only minor computational effort.

2h
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Perform steps 1 to 5 for p=!,...,Pmax:

Step 1: Choose as starting distribution M, = Mmax, i=1,...,s

Step 2: Compute p(p,M i  , i = 1,...,s) and

N(p,M i  , I = 1,...,s)

Perform steps 3 and 4 until N i No .

Step 3: Find j {, ...,s} with the following property:

If one layer is removed at Aj , the quotient of the change of the total

number of degrees of freedom and the change in the error predictor (5.11) is

maximal.

Step 4: Remove one layer at Aj , update p(p,M. , i=1,...s) and

N(p,M i  , i= .... s) .

Step 5: {Mi  , i=1,...,s} is now a locally optimal distribution for the

specified p-degree.

In practice it is cften useful to compute the error predictor as a

function of NO , for optimal distributions of the degree p and the number of

layers, i.e., to perform a sequence of optimization processes.

5.3 Prediction of the total error

Because of the constant C in (5.10) the error predictor estimates the

total error in the energy norm only up to a constant, which has still to be

" determined. As has been shown in [8], the error behaviour for optimal meshes

is of the eyp BeNE/3
itype .eE Hence it is advantageous to visualize the

error in the scale lglel x N1 /3  
. The error predictor gives good qualita-

tive characterization of the total error (including the errors in noncritical

elements), if it will be properly scaled by a shift of lg(jej ). This

adjustment determines the proper constant C in (5.10) and will be called
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calibration. The main idea is to calibrate the error predictor (i.e., the

curve lg(Iej) x N1 /3  so that for small p the error predictor is close to

the actual error. This can be done by various approaches. For example, we

can compute the solutions for p=1 and p=2  or p=1,2,3 on the basic mesh

and determine the approximate error by extrapolation, assuming that

*(5.12) Iej E = C N-

for the p-version on a fixed mesh where 6 depends on the smoothness of the

solution. Experience shows that for low p and coarse meshes 6 = .70 to

S6 - .75 gives reasonable results in most practical cases.
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6. NUMERICAL EXAMPLES

In two numerical examples we will show the steps of the expert system as

described in section 4. The first example will have onl~y one singular point,

showing the basic principles of the error prediction. The second example will

* have 9 singular points and show that Superior accuracy can be obtained in

practical problems.

* 6.1. Problem 1: The L-shaped Domain

Figure 6.1 shows the basic mesh of three elements constructed in step a)

of section 4. The domain is loaded by tractions so that the exact solution

/ shows mode 1 stress distribution given, for example, in [18]. The solution

* has singular behaviour at the reentrant corner.

As each of the three elements Is adjacent to the reentrant corner, in

step b) each element is expected to be critical.

4. Step c) extracts critical data about the solution of the problem. In

order to get sufficiently accurate data for an extrapolation of the exact

* energy (see section 5.3) and an accurate relation of the two stress intensity

* factors K1  and K2  at the reentrant corner, one circular refinement layer

was added at the reentrant corner (Fig. (6.2)). On this mesh a finite element

* computation was performed for p=l,,2,3. This crude computation yielded for

* p=2 approximate stress intensity factors K, =0.91 , K2 =0 (the exact

values for this example are: K1  1 and K2 =0). The approximate energy of
W

the three solutions was U1  3.8288279, U2 = 4.097575 4, u3 = 4.13 4J477. The

J stress intensity exponents are only geometrical data and can be COMPL~ted

exactly. They are given by a= 0. 544L84 and a 2 =0.908529
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Figure (6.1). L-domain, basic mesh

Figure (6.2) L-domain, elementary mesh for crude computation.
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Figure 6.3. L-domain. Predicted error

Steps d) and e) predict the performance of various optimal meshed and p-

degrees and present this prediction graphically to the user. Out of the

computed energy of the solutions for p=1,2, the exact energy is extrapolated

by (5.12) with 6 = .75 to U = 4.1646802 which estimates well the exact

strain energy of Uex = 4.1545442.U served to calibrate the predicted error in

the energy norm. Figure (6.3) shows the error prediction as it is presented

to the user for p--...,8 and n-2,...,7.
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In steps f) and g) one particular mesh-degree combination would be con-

structed automatically after the user's decision and the finite element

computation would be performed. In order to show the performance of the error

prediction, we compare Fig. (6.3) with the actually computed solutions on the

combinations of mesh and polynomial degree. The numerical results are taken

from [19]. Figure (6.4) gives the real error in the energy norm. All mesh-

degree combinations, which were predicted to be optimal for a specific number

of degrees of freedom, are marked with circles in Fig. (6.4). It shows that

each of these meshes is on the lower left envelope, which means that the

prediction of the optimality was right in each case.

50

Il0

E
0

5

C

- 0.5 P=5
0
I,

P=7

0.05-
200 800 1500

Number of degrees of freedom N

Figure 6.4. L-domain. Exact error.
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m/p NDOF e% P E%

2/2 79 11.71 16.64 1.42

2/3 143 6.95 8.52 1.22

3/3 209 3.93 4.94 1.26

3/4 335 2.14 2.46 1 .12

4/4 439 1 .43 1 .64 1 .15

. 4/5 651 0.735 0.772 1.05

5/5 805 0.585 0.577 0.99

4/6 911 0.476 0.495 1.04

5/6 1127 0.286 0.259 0.91

6/6 1343 0.253 0.211 0.83

5/7 1509 0.168 0.156 0.93

6/7 1799 0.121 0.091 0.75

6/8 2327 0.066 0.051 0.77

7/8 2703 0.054 0.033 0.61

Table 6.1: Actual error, predicted error and effectivity index

for L-shaped domain.
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The slope of the curve joining the optimal mesh-degree combinations,

i.e., the envelope in Fig. 6.'4 is a straight line in the Log-Nl/ 3--scale, which

shows that exponential -'ate of convergence is obtained by this feedback

process. Finally in table (6.1) the efficiency index of the error predictor

el is given for all optimal meshes. 0 ranges from 0.61 to 1.4~2 which

shows that the relative error is reasonably estimated by the error prediction.

We performed the same computations on geometrical meshes of the type

shown in Fig. 3.1 with elements with only straight edges. Qualitative and

quantitative behaviour of error prediction and actual error was very similar

to the meshes with circular refinement around the singularity, so that these

results are not reported in detail.

* 6.2. Problem 2: The Wrench

Figure 6.5 shows the domain of computation and the loads of the second

problem. The domain has 9 reentrant corners (including the two tips of the

crack interior to the domain). Constant traction is applied along the edge CD

and a symmetry boundary condition is imposed along AB. Isotropic material

* with E = 3E8 psi and v = .3 was assumed.

Figure 6.6 shows the basic mesh of this problem as it was constructed

interactively by a modification of a mesh generator of MODULEF [20]. The

basic mesh is as coarse as possible, only modelling the geometry of the

problem (part a) in section 4))
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Figure 6.6. Basic mesh for problem 2.
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In the next step of the analysis (part b) the decision about critical and

noncritical elements is made. Again, each element is critical as each has at

least one reentrant corner as node.

Step c) extracts critical data about the solution. As was shown in

section 5, the stress intensity factors Kji and exponents a z~i of the

*singular functions provide means to predict the error i n the energy norm for

all combinations of (geometric) mesh and polynomial degree p. For a saffi-

ciently accurate extraction of stress intensity factors it is necessary to

have a mesh such that at most one singular point is in each element. There-

* fore out of the basic mesh an elementary mesh is constructed automatically,

Fig. 6.7. Table 6.2 gives the stress intensity factors K. ,j=1.,2 for
J,i

* 0=2. As reference solution, "exact" stress intensity factors are shown, which

were obtained on a strongly refined mesh with p=5 and 2985 degrees of free-

dom. it can be seen that all stress intensity factors are within a relative

error of about 15% compared to the largest stress intensity factor (K2,1 m

-.157154 E14 at point 1). The strain energy on the elementary mesh for p=1

is U1  =0.0323163736 and for p=2 U 2 = 0.0357676705. Using 6 = .75 in

(5.12), the estimated exact energy is U = 0.03673856, which yields an

estimated error in the energy norm of 14.4~% for the elementary mesh with

P=3 (U3 = 0.0359766585). This value is used to calibrate the error predictor

(see 5.10).

* Step d) predicts the error for p=2,3,~4 and 5 for various combinations and

optimizes mesh and polynomial degree fc- a sequence of N0 as described in

section 5.2. The result of this optimization is shown in Fig. 6.8 and table

6.3 as it is presented to the user in step e). Each point in Fig. 6.8 corre-

sponds to a certain layer distribotion given in table 6.3. Again, the next

strep in practice would be the decision of the user on a particular mesh-degree

K 3



I

Figure 6.7. Mesh for crude computation of problem 2.
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relative

point ctors basic mesh refined mesh error (%)

1 1 KI  0.359377 E3 0.377353 E3 1.2
KII -0.155661 E4 -0.157154 E4 0.9

2 KI  0.551988 E3 0.574465 E3 1.4
KII -0.992989 E2 -0.109476 E3 0.6

3 KI  -0.536166 E3 -0.534692 E3 0.0
KII -0.205327 E2 -0.983101 El 0.6

4 K1  0.299322 E3 0.539827 E3 15.3
KII -0.943211 E2 -0.168955 E3 4.7

5 KI  0.561447 E3 0.580995 E3 1.2
KII 0.127882 E3 0.128434 E3 0.0

6 KI  0.358611 E3 0.374829 E3 1.0

KII 0.156916 E4 0.155843 E4 0.6

7 K 0.325866 E3 0.311223 E3 0.9
KII 0.115326 E3 0.753421 E2 2.5

8 KI  0.420292 E3 0.437345 E3 1.1
K1 I -0.295953 E2 0.224532 E2 3.3

9 K 0.204060 E3 0.234956 E3 2.0
KII -0.219939 E3 -0.218943 E3 0.0

Table 6.2. Stress intensity factors from basic mesh (p=2) and

refined mesh (p=5).
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Figure 6.8. Predicted error for problem 2.
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Element layers of point

Polynomial Total number 1 2 3 14 5 6 7 8 9
degree p of degrees of

freedom

2 488 2 2 2 1 2 2 1 1 1i
2 692 3 2 2 2 2 3 2 2 21
2 8614 3 2 3 3 3 3 2 2 3

3 703 2 1 2 1 1 2 1 2 1
3 9141 2 2 2 2 2 2 1 1 2
3 1191 3 2 2 3 2 3 2 2 2
3 11409 3 2 3 3 3 3 2 2 3
3 1673 3 3 3 14 3 3 2 3 14
3 2187 5 4 14 14 4 5 3 3 5

14 1021 2 1 1 2 1 2 1 1 1
14 1229 2 1 2 2 2 2 1 1 1
14 1685 2 2 2 2 2 3 2 2 2
14 2101 3 2 2 3 3 3 2 2 3
14 2517 3 3 14 14 3 3 2 2 3
14 3192 14 3 14 5 3 14 3 3 5

5 1127 1 1 1 1 1 1 1 1 1
5 1955 2 1 2 2 1 2 2 1 2
5 2369 3 2 2 2 2 2 1 2 2
5 2985 2 2 3 3 2 3 2 2 3

Table 6.3. Distribution of layers
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combination. In contrast to that, we performed here finite element computa-

* tions for all meshes and degrees as specified in table 6.3. The refined

* meshes were constructed automatically by the mesh generator. Figure 6.9 shows

* one example of a refined mesh, corresponding to the combination with p=5 and

2985 degrees of freedom in table 6.3. Figure 6.10 shows the real error for

* all computations. We estimated an exact energy from extrapolation on an ex-

* tremely refined mesh and high polynomial degree to UEX = 0.0367809, which

is very close to the estimated energy after the crude computation in step c).

* Comparing Figs. 6.8 and 6.10, it can be seen that the real error for a certain

* p-degree levels off earlier as the predicted error. This seems to be due to

the fact that the error predictor neglects the error in "smooth" parts of the

solution which are still significant for low p-degrees.

However, 8 of 10 optimal points (points at the lower left envelope in Fig.

6.8 which are marked by circles in Fig. 6.10) turn out to be really the best

- meshes for the specified number of degrees of freedom, the remaining two

meshes having only mildly larger error than the actually best combinations.

It should again be mentioned that the optimal meshes constructed in the feed-

* back process, converge with exponential rate, which shows that the feedback

- really yields optimal mesh design. Finally table (6.14) gives the efficiency

index e = TeP-for all the meshes which is in the range of 0.143 to 1.35.
FIE

By this feedback process it is possible to construct a mesh which yields

an accuracy In the energy norm of about 2% for 3000 degrees of freedom.

Extrapolation from the elementary mesh shows that this accuracy could be

* obtained with a quasiuniform mesh using linear elements (assumed convergence

rate 6 =.25 ) with about 1E7 degrees of freedom. An adaptively constructed

mesh, using the h-version with linear elements (convergence rate 6 = .5 )

should yield this accuracy with about 314,000 degrees of freedom. About the
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Figure 6.10. Actual error for problem 2. 99
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same amount of dofs would be necessary for a pare p-version on the elementary

mesh. From these estimations it can be seen that about one order of magnitude

in the number of degrees of freedom is gained compared to an adaptive h-

* version or a pure p-version. So, roughly two orders-of-magnitude in storage

and computational time is gained if high accuracy solutions with an error in

d the range of 1 to 2% are desired.

The additional cost for the feedback is negligible. On an Apollo 420 the

overall time for the computation on the elementary mesh (p=1,2,3) together

* with graphical mesh generation, the sequence of optimizations of section 5.2

for p=2,3,'4,5, No from 400 to 4000 in steps of 200 degrees of freedom and the

construction of a refined mesh with 2985 dofs was less than 800 CPU sec,

* whereas the final computation on the refined mesh with p=5 took more than 4000

* CPU seconds.

Moreover, it should be mentioned that the human time is completely inde-

* pendent of the desired accuracy, a situation which is totally different from

conventional finite element analysis, where higher accuracy can only be

achieved by time consuming construction of refined meshes. Only the basic

* mesh has to be designed by human interference and, after this, only decisions

about the progress of the analysis have to be made.



Polynomial Total number p(%) le E
degrees p I of degrees of

freedom

2 488 17.21 12.74 1.35
2 692 9.95 9.42 1.06
2 864 8.07 8.56 0.994
3 703 9.99 12.54 O.80
3 941 5.58 7.71 0.72
3 1191 4.32 7.05 0.61
3 1409 3.34 6.38 0.52
3 1673 2.92 6.18 0.47
3 2187 2.87 6.17 0.47
4 1021 7.01 8.83 0.79
4 1229 5.50 7.46 0.74
4 1685 2.86 4.39 0.65
4 2101 1.85 2.99 0.62
4 2517 1.26 2.53 0.50
4 3192 1.00 2.30 0.43
5 1127 7.00 9.33 0.75
5 1955 3.67 4.71 0.78
5 2369 2.24 3.30 0.68
5 2985 1.29 1.94 0.66

Table 6.4. Estimated error, exact error and effectivity index.
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7. CONCLUSIONS

The main ideas of a knowledge-based system advising the analyst how to

*, design the mesh and degree distribution for the hp-version of the finite

element method have been presented. The system includes preliminary analysis

of the problems and, based on this analysis, it advises the analyst how to get

the prescribed accuracy for the lowest cost. Although the ideas are re-

stricted to a particular class of problem one can expect that ideas of the

kind we presented can be extended to more general cases and combined with

other CAD tools, solid modellers, etc., to a larger scale expert system.
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis

on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supportee by foreign govern-
ments or exchange agencies (Fulbright, etc.)

'Further information may be obtained from Professor I. Babuska, Chairman,

Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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